Manipulating Relativistic Electrons with Intense Laser Pulses

Victor Malka1,2*

1Laboratoire d’Optique Appliquée, CNRS, Ecole Polytechnique, ENSTA ParisTech, Université Paris-Saclay, Palaiseau, France
2Weizmann Institute of Science, Rehovot, Israel
*victor.malka@ensta.fr

Laser Plasma Accelerators (LPA) rely on the control of the electronic motion with intense laser pulses [1]. The manipulation of electrons with intense laser pulses allows a fine mapping of the longitudinal and radial components of giant electric fields that can be therefore optimized for accelerating charged particle or for producing X rays. To illustrate the beauty of laser plasma accelerators I will show, how by changing the density profile of the gas target, one can improve the quality of the electron beam, its stability [2] and its energy gain [3], or by playing with the radial field one can reduce its divergence [4]. I’ll then show how by controlling the quiver motion of relativistic electrons intense and bright X-rays beam are produced in a compact and elegant way [5-7]. Finally I’ll show some examples of applications.

References