Radiation reaction damping and ultra-intense gamma-ray flash generation in QED regime

Z. Gong*, R. H. Hu, W. J. Ma, C. Lin, H. Y. Lu and X. Q. Yan*

State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, China, 100871
*zgong@pku.edu.cn
*x.yan@pku.edu.cn

An accelerated charged particle must be accompanied with radiation and corresponding radiation damping. The prospective tens petawatt-class short pulse laser may bring us into the radiation dominant regime [1] and quantum electrodynamics (QED) regime [2]. The entropy reduction and cooling in phase space are exhibited when radiation friction term being added to Lorentz equation. The electric nodes in circularly polarized counter-propagating laser field behave spiral attractive property and the ratio of electron accumulation nearby phase space can be obtained through eigen equation and eigenvalue [3]. However, when quantum parameter \(\lambda \approx \frac{|F|^2 r_\perp}{|E| m_e c} \) approaches unity, the classical continuous radiation description cannot explain the discrete photon emission, pair plasma generation and quantum straggling effect. In multi strong pulse colliding configuration [4], the seeded electrons can be confined and accelerated efficiently to produce gamma-ray explosion and pair cascades, which provides potential application in laboratory astrophysics and e⁺e⁻ collider.

References