DD fusion neutron generation from low energy, fs-laser interaction with free flowing D$_2$O

Jungmoo Hah*, John Nees, Karl Krushelnick, and Alec Thomas

Center for Ultrafast Optical Sciences, University of Michigan, Ann Arbor MI, 48109, USA
*jmhah@umich.edu

Laser-Plasma Interactions (LPI) in relativistic regime can generate and accelerate high energy charged particles. These high-energy particles collide each other and trigger nuclear fusion reaction resulting in neutron production. Due to the advance in laser technology, km-size of particle accelerators shrink down to a table-top scale laser based particle accelerator.

Here we demonstrate heavy-water based neutron source. Using several-mJ energy pulses from a high-repetition rate (½ kHz), ultrashort (35 fs) pulsed laser interacting with a ~ 10 μm diameter stream of free-flowing heavy water (D$_2$O), we get a 2.45 MeV neutron flux of 10^5/s. In the intentionally generated pre-plasma, laser pulse energy is efficiently absorbed, and energetic deuterons are generated [1]. As laser pulse energy increased from 6mJ to 12mJ, the neutron flux increased. From the 2D particle-in-cell simulation, comparable neutron fluxes are shown at the similar laser characteristics to the experiment. Also, simulation shows forward and backward moving deuterons, which are main distributing ions impinging upon D$_2$O stream and vapor, respectively.

Figure 1. [Left] Neutron-ToF result from H$_2$O and D$_2$O target. Right] Neutron flux is measured (blue shaded region) by neutron bubble detectors and 2D PIC simulation (line plots) shows most of neutrons are generated from backward moving deuteron.

References